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It is known that the free energy at criticality of a finite two-dimensional system 
of characteristic size L has in general a term which behaves like log L as L --* oo; 
the coefficient of this term is universal. There are solvable models of two-dimen- 
sional classical Coulomb systems which exhibit the same finite-size correction 
(except for its sign) although the particle correlations are short-ranged, i.e., non- 
critical. Actually, the electrical potential and electrical field correlations are criti- 
cal at all temperatures (as long as the Coulomb system is a conductor), as a 
consequence of the perfect screening property of Coulomb systems. This is why 
Coulomb systems have to exhibit critical finite-size effects. 
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1. I N T R O D U C T I O N  

Some  t ime ago,  it was  s h o w n  by C a r d y  and  Peschel  1~'21 tha t  the free 

energy,  at criticality, of a finite t w o - d i m e n s i o n a l  system of  charac te r i s t i c  

size L has  a t e rm which behaves  l ike log  L as L ~ ~ .  M o r e  precisely,  the 

free energy  F ( t imes the inverse  t e m p e r a t u r e  fl) has  a i a rge -L  expans ion  of  

the form 

A L 2 +  B L - 6 1 o g  L +  --.  (1 . I )  

The  first two  te rms  represen t  respect ive ly  the bulk free energy  and the "sur-  
face" free energy;  the c o r r e s p o n d i n g  coefficients  A and  B are  nonuniversa l .  
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However, more interestingly, the coefficient of log L is universal, depending 
only on the conformal anomaly number c of the theory and on the Euler 
number Z of the manifold on which the system lives. This Euler number is 
completely defined by the topology of the manifold: X = 2 -  2 h -  b, where 
h is the number of handles and b the number of boundaries. For instance, 
Z = 2  for a sphere, Z=  1 for a disk, Z = 0  for an annulus or a torus. The 
above results hold for a smooth metric and a smooth boundary. 

An especially simple example is the Gaussian model, the partition 
function ZG of which is defined in terms of a field ~(r) by the functional 
integral 

Za = f @r exp( - fl,,vga) (1.2) 

with a Hamiltonian 

1 
~ a  = ~-~n f: (V~) 2 d2r (1.3) 

This model is critical at all temperatures, with a conformal anomaly 
number c = 1, and its free energy is indeed of the form (1.1). 

While computing the free energy of finite two-dimensional Coulomb 
gases, in all cases when an exact solution has been obtained, we noted that 
this free energy was of the form 

X flF= AL 2 + BL + -~ log L (1.4) 

strongly reminiscent of (1.1) for the Gaussian model case ( c =  1), except 
for a change of sign. This critical-like behavior of the free energy of a 
Coulomb gas is at first sight unexpected, since the correlations between the 
particles are short-ranged, with a finite correlation length. However, a 
critical-like behavior of the free energy has already been found and 
explained by Forrester 131 for Coulomb gases with a periodic boundary con- 
dition; the essence of the explanation was that the Coulomb interaction 
(log r in two dimensions) is the inverse of the Laplacian operator d, and 
therefore a Coulomb gas is related to the Hamiltonian (1.3) rewritten as 
- ( 4 1 t )  - I  S ~ zlff d2r. 

One purpose of the present paper is to emphasize further the relevance 
of the Hamiltonian (1.3) for describing a Coulomb gas; indeed, if ~ is inter- 
preted as the electrical potential, (1.3) is just the well-known expression of 
the electrostatic energy in terms of the electrical field E = -Vff .  Usually, a 
Coulomb system is described in terms of the charge density p(r). However, 
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a description in terms of the electrical field E is the one which is 
appropriate for showing that a Coulomb system is from that alternative 
point of view a critical system. In Section 2 we discuss in more detail the 
description of a Coulomb system in terms of the electrical field E and how 
this leads to the term (X/6) log L in the free energy (1.4) of a finite system. 

In Sections 3 and 4 we check the validity of (1.4) on two solvable 
models: the one-component plasma and the two-component plasma, at a 
special temperature. Another approach to the two-component plasma 
problem is discussed in the Appendix. 

2. C O U L O M B  SYSTEMS SEEN AS CRITICAL SYSTEMS 

2.1. Coulomb Systems and Charge Fluctuations 

The Coulomb systems that we consider here are made of charged 
particles which are assumed to move in a plane, for the time being. The 
interaction between two particles of charges qj and qj located at r i and r E 
is -q~qjlog([ri-rjl/a), where a is an arbitrary length; some short-range 
potential may be added. We shall also deal with a simplified model, the 
one-component plasma (OCP) or jellium, made of one species of particles 
of the same charge q embedded in a background of uniform charge density 
of the opposite sign. The systems under consideration always have zero 
total charge. 

In the usual approach, an important quantity is the (microscopic) 
charge density 

p(r) = ~ qif(r - -  ri) 
i 

(for the OCP model, the background charge density must be added). The 
simplest averages associated with p(r) are ( p ( r ) )  ( = 0  by neutrality) and 
the two-point function S ( I r - r ' l ) =  ( p ( r ) p ( r ' ) ) .  A Coulomb system may 
have phase transitions. Here we consider only the case when the system is 
in a conducting phase. Then S(r) is short-ranged, with a correlation length 
of the order of the average interparticle distance. The system is assumed to 
have good screening properties for the charges, and that results in the two 
Stillinger-Lovett sum rules ~4~ 

f : - 

In terms of the Fourier transform 

S(k) = f S(r) exp(ik,  r) d2r 
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the Stillinger-Lovett sum rules are equivalent to the statement that the 
small-k behavior of S(k) is 

S(k) ~ kZ/ZTtfl (k --* O) 

i.e., that the two-point function of 

p(k) = ~ p(r) exp(ik, r) dZr 

has the small-k behavior 

(p(k)p(-k ' ) )~(Z~)2 6(k-k')kZ/2~fl (k,k'~O) (2.1) 

Actually, the standard proof t31 of (2.1) can be extended, resulting 
into a stronger statement: For small k, the random variables p(k) are 
jointly Gaussian, with the covariance matrix (2.1). This can be shown as 
follows. One starts with the assumption that an external charge density 

pext(k) e x p ( - i k  .r)d2k/(27t) 2 is perfectly screened, i.e., that it induces in 
the system an opposite charge density, provided the external charge has 
only small-k Fourier components pc.,(k). Since the external charge 
couples to the microscopic charge density p(k) by an energy 

Pcxt(-k)(2~/k2) p(k)dZk/(2~) 2, the above assumption can be written 

(exp[  - f l  ~ Pe~,( - k')(27z/k '2) p(k') d2k'/(2~) 2 ] p (k) )  
( e x p [ - f l  S Pext( - k')(272/k'2) p(k') d2k'/(2~) 2] ) = - pe~t(k) (2.2) 

where ( . - - )  stands for an average with respect to the unperturbed 
Boltzmann factor. If p,~t(k) is assumed to be infinitesimal, one obtains 
(2.1). The Gaussian behavior of p(k) stems from theassumption that (2.2) 
holds also for a finite P~xt(k). This can be seen by rewriting (2.2) in terms 
of a functional derivative as 

a k'l\ 
6 log(exp[_fl fpext(_k,)(~,2)p(k,  ) (27~)2-]/ 6p,~,(-k ) 

27~fl 1 
- k2 (2n) ~p~xt(k) 

an equation which can be integrated into 

< e x p [ - f p ~ t ( - k ) ~ p ( k )  d2k ] \  
r 

27~B "k" k-I 
=exp  ~ I p . , , t ( - k ) - ~ p . , . [  ,(--~n)2 j (2.3) 
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The validity of (2.3) for arbitrary parameters Pe , t ( -k)  is the well-known 
characterization of a Gaussian behavior for the random variables p(k), 
with the covariance (2.1). 

Incidentally, the Gaussian behavior of the long-wavelength fluctua- 
tions holds as well for three-dimensional Coulomb systems. The present 
results are related to some previous ones. ~5"6~ 

2.2. Electr ical  Potent ia l  and Electr ical  Field F luctuat ions  

The Fourier component r of the electrical potential is related to 
p(k) by the Poisson equation k2r 2rip(k). From (2.1) we obtain 

f l ( r  2 (k, k' --* O) 

and therefore, for the electrical potential r in position space, 

fl(~b(r) ~b(r')) ~ - l o g  I r - r ' l  + const ( I r - r ' l  ~ co) (2.4) 

From (2.4), one obtains for the electrical field -due ( r )  

~ [-6~,,,- 2 ( r - r ' ) "  ( r -  r')".-] 1 
fl< O,~k(r) O,~(~(r') ) 

L [ r -  r'l 2 J [ r - r ' l  2 
( I r - r ' l  ~ c~) 

(2.5) 

/~(p(r) p(r ' ))  = _ 1  zl6(r - r') (2.6) 

[-The asymptotic behaviors (2.4) and (2.5) have been derived in a more 
careful way in ref. 7.] Furthermore, since the fluctuations are Gaussian (for 
small k, i.e., for large qr-r ' l ) ,  one can use Wick's theorem for obtaining 
the n-point functions. 

Thus, the asymptotic forms of these electrical potential and field 
n-point functions are the n-point functions of the Gaussian model (1.2). 
Now, the meaning of "asymptotic" is that the distances under considera- 
tion should be large compared to the characteristic microscopic length of 
the system, which is the average interparticle distance. But in a critical 
system such as the Gaussian model, one also has to introduce some short- 
distance cutoff. Therefore, in the Coulomb system, the average interparticle 
distance plays the role of the cutoff, and for larger distances the n-point 
functions are just identical in a Coulomb system and in the Gaussian 
model, and in that sense a Coulomb system is a critical system. Let us 
stress again that this is a consequence of perfect screening, as explained in 
Section 2.1. Incidentally, in that same spirit of disregarding the microscopic 
detail, (2.1) gives for the charge density 2-point function in position space 
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The Gaussian partition function (1.2) generates correlation functions 
which are those of the Coulomb system. However, this does n o t  mean that 
one can compute the free energy of the Coulomb system by the direct use 
of (1.2), for a variety of reasons and in particular because (1.2) contains 
the functional integration ~ b . . -  rather than the integration upon the 
particle coordinates ~d2r, d2r2 d2r3---.  Fortunately, we can circumvent 
that difficulty by working with the stress tensor, as follows. 

2.3. Stress Tensor  

The stress tensor, a generalization of the pressure, expresses the 
response of the system to an infinitesimal deformation. Following refs. 1 
and 2, we consider a coordinate transformation r " ~  r '" = r " +  ct~'(r), with 
ct ~ infinitesimal. When the change of the Hamiltonian can be written, to 
first order in ct ~, as 

1 f T.~(r) O'a"(r) dZr  ae= -2-g (2.7) 

this defines the stress tensor Tu,.(r). 
The transformation r ~ r' can be interpreted either in an active sense 

(the system is deformed) or in a passive sense (the grid which defines the 
coordinates is deformed). We follow the choice made in refs. 1 and 2, which 
is the second one, i.e., 6~f' is defined by 

~EqS(r ' ) ]  + 6o~ = ~ E ~ ( r ) ]  (2.8) 

We shall now show that the stress tensor is the same one for the Gaussian 
model and for a Coulomb system, except for a change of sign. 

In the case of the Gaussian model Hamiltonian (1.3), 

_if dfa[~b(r ' ) ] -4n  [V'~b(r')]2d2r ', 
_1; 

Jfa[~b(r)] - 4n [V~b(r)]'- d2r 

and one readily finds that 63q0 is of the form (2.7) with 

T,~ = - -  O ufb 0,.r + �89 2 (2.9) 

In the case of a Coulomb system, we can write the Hamiltonian in 
terms of the microscopic charge density p(r) as 

If ~ec[p(r)] = - ~  p ( r ~ ) l o g - -  
lr,-r21 

p(r2) d2r, d2r2 (2.10) 
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In doing so, we have included in g c  the self-energies of the particles; this 
is convenient for the purpose of the present paper. In terms of the trans- 
formed variables r';= r,.+ a(ri) ( i=  1, 2), 

1 / .  

3r = -- ~ | p(r'~) log 
d 

Ir'l - r[] p(r[) d2r'1 d2r~ 
a 

Noting that by charge conservation , 2 ,  p(ri) d r~= p(ri) d2r~, expanding 
log(Irt-r21/a)=log(lr,--r2+a(rl)-a(r2)l/a) to first order in a, intro- 
ducing the electrical potential 

o~(r,) = - I log Ir, - r2[ p(r2) d2r2 
a 

using the Poisson equation A~b(r)= -2r ip( r )  and the symmetry between r~ 
and r2, and defining &Wc in a way similar to (2.8), we obtain 

Jo~c = o~c Ep(r)] - o~c Ep(r')] = 1 ; Aft(r) O,~(r) cr d2r 

Using the identity 

~J~ a.~ = a"Ea,,~ d,.~ - �89 ~ ] 

we find after an integration by parts 

1 t" 

&Y4- = - ~ / T.,,(r) 0"~"(r) d2r 
d 

with a stress tensor which now is 

T. , ,  = G 4 ,  0 , , r  _ i 2 (2.11) 

i.e., has the opposite sign of the stress tensor (2.9) of the Gaussian model. 
Of course, (2.11) is just the Maxwell stress tensor. 

The close relationship between the stress tensors is obviously related 
to the well-known transformation which allows one to reexpress the 
Coulomb energy (2.10) in terms of the electrical field -V~b, which gives the 
Gaussian Hamiltonian (1.3): 

YCc =~ I p(r)~(r)d2r= -4-~ I [A~(r)] ~(r)d2r 

if = 4---n EV~b(r)] 2 d2r = ~f~a 

822/76/I-2-22 
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The sign difference between the stress tensors can be understood if we now 
imagine the system as built on some elastic membrane  which is deformed: 
it is not the same to have the charges or to have the potentials stuck on 
that  membrane.  

As defined here; the stress tensor (2.11) of the Cou lomb  gas is 
traceless, i.e., in the present approach one finds zero for the pressure p of 
an infinite Cou lomb  gas, while the known equat ion of state is 181 

where __+ q is the charge of a particle and n is the number  of  particles per 
unit area. Indeed, quantities which depend on n, i.e., on the microscopic 
length n-~/-', are necessarily lost in the present formalism, which corre- 
spondingly cannot  account for the coefficients A and B of the free energy 
(1.4). On the contrary,  the present formalism will account  for the last term 
of (1.4). 

2,4. Finite-Size Correct ion to the Free Energy 

Since Cou lomb  systems have the same Hamil tonian,  the same correla- 
tion functions, and the same stress tensor (except for its sign) as the 
Gauss ian  model, the calculations in refs. 1 and 2 are valid for the two- 
dimensional Cou lomb gases, and they lead to (1.4), with (g/6) log L instead 
of - ( X / 6 ) l o g L  accounted for by the different sign of the stress tensor. 
There is no need to reproduce here the details of these calculations of 
refs. 1 and 2. We shall only, for the sake of completeness,  sketch the main 
points. 

It is convenient to use the complex coordinates z = x + i y  and 
~= x - i y .  The correlation functions (2.4) and (2.5) become 

1 1 , 
f l (~( r )  ~ ( r ' ) )  = - 7 1 o g ( z - z ' ) - 7 1 o g ( ~ - ~  ) + const (2.12) 

z z 

/~ (O..~b(r) &:4b(r') ) = 

/~(Se~(r) 8_~,~b(r')) = 

( a : ~ ( r )  O.~4b(r')) = 0 

1 1 

2 ( z - z ' )  2 

1 1 
2 (~_5 , )2  

and the nonvanishing elements of the traceless stress tensor are 

T~. T= = (c~:~) 2, T-= Tee = (Oeck) 2 

(2.13) 

(2.14) 
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An important part is played by the correlations of the stress tensor with 
itself. This is a 4-point function with coincident points, which is easily 
computed from the 2-point functions (2.13) by using Wick's theorem, with 
the regularization prescription that contractions between fields at the same 
point must be omitted. The nonvanishing elements are 

1 1 
flZ<T(r) T(r')> 2 ( z - z ' ) 4 '  fl2(T(r) T(r')>=2(~_~,)--------- ~ (2.15) 

These correlations characterize a conformally invariant theory with a 
conformal anomaly number e = 1. 

The above relations hold for an infinite flat Coulomb system. For 
dealing with a system living on a curved manifold, one treats the curvature 
as a perturbation which changes the metric, i.e., which behaves like a strain 
c~"a" in (2.7). The linear response of the stress tensor to the corresponding 
perturbation Hamiltonian 6Jg can be expressed in terms of the correlation 
functions (2.15). In this way, one obtains the average of the stress tensor 
of the curved system. That tensor now has a nonzero trace O and the 
average <0 > is related to the change L(OF/~L) of the free energy F under 
a global dilatation (i.e. a change of the characteristic size L), which leads 
to the logL term in (1.4). 

Similar considerations apply to the case when the Coulomb system 
has a (curved) boundary. 3 One starts with a semiinfinite system confined to 
the upper half-plane, and one introduces a curvature of the boundary as a 
perturbation. One then needs stress tensor correlations which generalize 
(2.15) to the case of the semiinfinite system. 

For the Gaussian model, one finds that, in addition to (2.15), the 
correlations have the nonvanishing element 

1 
f l"(T(r)  T(r ' ) )  - 2(z - ~?,)4 (2.16) 

in the upper half-plane. With the additional ingredient (2.16) one gets the 
general result (1.1), which includes the curvature effects of both the 
manifold and its boundary. 

The analog of (2.16) for a Coulomb system can be found by using 
known features ~9~ of the charge-charge correlation function near a straight 
boundary (here the x axis). This function has an algebraic decay along the 
wall: for large I x - x ' l  it has the asymptotic behavior 

f ( y ,  y ')  
fl<p(r) p(r') > ~ ( x _  x,) 2, I x -  x'l ~ oo 

3 The boundary is assumed to be a plain hard wall which confines the charges. This does not 
generate any simple boundary conditions for the electrical potential. 
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where f ( y ,  y') is localized near the boundary y = y ' =  0 and obeys the sum 
rule 

1 
f dy f dy' f (y ,  y')= 2~ 2 

If the microscopic detail is disregarded, one obtains a surface contribution 
to the charge fluctuations 

1 6(y) 6(y') 
/~(p(r) p ( r ' ) )  = 2n 2 ( x_x , )  2 

In other words, there is a surface charge density a(x) along the x axis, with 
correlations 

1 1 
/~(~r(x) a(x')) = 2n 2 ( x -  x') 2 (2.17) 

The 2-point function of the electrical potential must be associated to a 
2-point function of the charge, which now has both a bulk contribution 
(2.6) (in the upper half-plane only) and a surface contribution (2.17). One 
finds 

/~(~b(r) ~b(r') ) = - �89 log[(z - z ' ) ( 2 -  ~?')] 

/~(~b(r) ~b(r') ) = - �89  if 

y, y'>O or yy' <O 
(2.18a) 

y, y ' < 0  (2.18b) 

It is easy to check that ( p ( r ) p ( r ' ) ) =  (2rt) -2 (A~b(r)A'~b(r')) is indeed of 
the form (2.6) in the upper half-plane, while the discontinuities of 
(3yq~(r) dy,~(r')) on the x axis do generate the surface charge correlations 
(2.17). 

From (2.18b), one finds that the electrical field 2-point function in the 
lower half-plane is 

/3(az~b(r) 0e.~(r')) = - 
1 1 

2 ( z -  ~') 2 

Through Wick's theorem, one obtains (2.16) now in the lower half-plane. 
(We are now dealing with a Coulomb system, and although the charges are 
confined to the upper half-plane, the electrical potential and electrical field 
do not vanish in the lower half-plane.) Using (2.16), now in the lower half- 
plane, in the calculations of refs. 1 and 2, will generate the term (X/6) log L 
in (1.4). 
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Finally, it should be noted that the analogy between a Coulomb 
system and the Gaussian model will hold on a curved manifold only if the 
Coulomb interaction is defined in a way which preserves Poisson's equa- 
tion Ar  --2rip(r). For instance, for a Coulomb gas made of particles 
of charge qt on the surface of a sphere, the potential must be chosen ~1~ as 
~ ( r ) = - Z ~ q i l o g ( l r - r i l / a ) ,  with I r - r i l  the length of the chord which 
joins surface points r and r;. It is then easy to check that 

A~(r) = - 2n ~ q,6(r - r;) 
i 

(where zi is the two-dimensional Laplacian on the sphere and 6 the two- 
dimensional "delta function," on the sphere), provided that the system is 
globally neutral, i.e., ~ ;  qa = 0, a condition which will always be assumed to 
hold. 

The conclusion of the present section is that a finite two-dimensional 
Coulomb system, when in a conducting phase, has a free energy of the 
form (1.4). We shall now check this general formula in exactly solvable 
cases. 

3. O N E - C O M P O N E N T  P L A S M A  

The two-dimensional, one-component plasma was defined in Section 2.1. 
It happens to be an exactly solvable model ~1 ~ in the canonical ensemble at 
that temperature such that/~qZ= 2, for a few geometries. Let us consider in 
turn these geometries. 

3.1. The Disk 

From the calculations in ref. 11, when flq2= 2 the free energy F for a 
system with N particles in a disk of radius R is given by 

f lF= fiF O - log a - log O' (3.1) 

where fifo is the ideal gas part 

l {rtR2"~ u 
fiFo = - log ~.. \--A-5-.] 

(A is the de Broglie wavelength), 

Q =  exp N Z - N l o g  Nu~N+~v2 
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and 

Q' = e - tln ,,=o ~ dt 

In ref. 11, only the thermodynamic limit of FIN was computed. Here, we 
revisit that calculation, in order to obtain finite-size corrections. For a 
given value of the number density n = N/rtR 2, we look for a large-R (or 
equivalently a large-N) expansion of flF. 

Using Stirling's formula 

1 1 1 
log N ! = N log N - N + -~ log N + -~ log( 27t ) + ~--N + .. .  (3.2) 

we find 

where 

fiFo = N[log(nA 2) _ 1 ] + �89 log N + O( 1 ) 

For computing log Q, one can use the identity 

N 

log(l! 2 ! . . . N ! ) = ( N +  1 ) l o g N ! -  y '  k l o g k  (3.3) 
k = l  

and the expansion tl2~ 

N z N z 1 
~ k l o g k = - ~ l o g N - - - 4 - + ~ N l o g N  

k = l  

+ l ~ l O g N + l - ( ' ( - 1 ) + O ( 1 )  (3.4, 

(where (' is the derivative of Riemann's zeta function: ~ ' ( -  1)= -0.1654...) 
with the result 

- l o g  a = N[ - �89 log(nna 2) + 1 - �89 log(2r0] - ~ log N +  O(1) 

As to log Q', it can be expanded by noting that So u e - ' t "  dt is close to 
n! except when n approaches N. The relevant contributions to log Q' are 
such that N - n  is of the order of x//-N, in which case one can rise the 
asymptotic formula~ 13 

e - ' t " d t =  1 + q5 \ ( 2 ~ ] j  

~ ( y )  = e-~2 dx 
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is the error function. Replacing the sum on n by an integral on 
y = ( N -  n)/(2N) u'-, we find 

% '  (1 f : e - , t ,  ) --log Q ' =  - log ~.v dt 

= - ( 2 N )  '/2 dylogl+~(Y)+o(1) 
2 

[the existence of a contribution O(x/'-N ) from log Q' was not properly 
mentioned in Eq. (2.19) of ref. 11]. 

Finally, the total free energy is given by 

flF= flfnR 2 + fly2rrR + ~ log[(Trn) '/2 R] + O(1 ) (3.5) 

where the coefficients of nR 2 and 2nR, respectively, involve the bulk free 
energy per unit area f and the surface tension y, for which we recover the 
previously known expressions tlL ~4) 

flf=Ilog(nA2 ) 1 , 1 
- ~ log(rcna-) - ~ log(2r~)] n (3.6) 

fly = - (n/2n) ~/2 ~o dy log - - 1  + 2q~(Y) = 0.239 (3.7) 

The next term in (3.5) is (1/6)log R, in agreement with the general formula 
(1.4), since for a disk Z = 1. 

3.2.  T h e  A n n u l u s  

The disk calculation can be generalized to the case of an annulus. The 
background and the N particles are now confined on an annulus with an 
inner radius R~ and an outer radius R2. The particle number density now 
is n=N/r~(R~-R~) and it is convenient to define Nt=r~nR~ and 
N2 = rtnR~ ; thus N2 - NI = N. 

The total potential energy, including background-background, back- 
ground-particle, and particle-particle interactions, is found to be 

~ [  N 2 1 1 2 3 
V= --~- log rtna +~N~logN2-~N,  logN, -~(N~-N~)  

+ ~ (rcnr~ - N, log ~nr~) - 2 log ~nr 
i = 1  l <~i<j<~ N 
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where r,- is the distance of the ith particle to the center and r o. the distance 
between particles i and j. Using the same method as in ref. 11, one obtains 
a free energy given by (3.1), where now 

_I 
-l~ L A~ J 

Q =  exp N ] - ~  , - ~  _ z 

N 2'~1 N! 
+ ~ l o g  rcna ) j - ~ N  l ! (N 1 + 1)!. . .  (N 2 -  1)! 

and 

Nl--l(lf N2 ) 
a ' =  1--I - -  e - ' t "d t  

. = N ,  \n  ! JN, 

Expansions of/?F o and - l o g  Q can be obtained by the same methods 
as in the case of the disk. For the calculation of - l o g  Q', the relevant 
contributions are now from two domains of n: N 2 - n =  O(x//'~2) and 
n - N~ = O(x//-~), which gives 

I ~  - -  - l o g Q ' =  -[(2N2)~/'-+(2N~) '/'-] d y l o g l + ~ ( Y )  +o(1)  
2 

One finds a total free energy given by 

R2 #F=#f~(n~-R~)+#re,~(R, +R~)+ log~+O(1) (3.8) 

where the bulk free energy per unit area f and the surface tension 7 are 
again given by (3.6) and (3.7). Now, however, as R 2 and R~ go to infinity 
with a fixed ratio R2/R~, the term (1/6)log(Rz/Rj) of (3.8) remains O(1), 
as expected from (1.4) where X = 0  for an annulus. 

3.3. The Sphere 

As stated in Section 2.4, the interaction between two particles of a 
one-component plasma on the surface of a sphere must be chosen as 
_qZlog(r/a), where r is the length of the chord which joins the two 
particles; the same prescription must be used for computing the back- 
ground-background and particle-background interactions. For 3q z = 2, an 
exact expression of the free energy has been previously found} Is) For N 
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particles on the surface of a sphere of radius R, the total free energy, 
including the ideal gas part, is given by 

flF= - - loge u2/2 { 2rcaR'~ N [-I ( k --1)! ( N - k ) !  
\ - " - ~ ]  ~=, N! 

Again using (3.2)-(3.4), for a fixed value of the density n = N/4~R'-, we 
obtain the large-system expansion 

flF= flf4~R 2 + ~ log[(4~n} 1I~ R] + ~ . -  2~'( - l) + o(1) 

with the same bulk free energy per unit area (3.6} as previously, no 
boundary term, and a ( l /3 ) logR term in agreement with the general 
formula (1/4) where X=2 for a sphere. 

4. T W O - C O M P O N E N T  P L A S M A  

The two-dimensional, two-component plasma is a system of particles 
of charges q and - q ;  two particles located at ri and rj interact through a 
potential +q21og(Iri-rjl/a). This model is an exactly solvable one, (16-t8~ 
in the grand-canonical ensemble, at that temperature such that flq"=2. 
Instead of the usual fugacity ~, it is convenient to use a rescaled one, 
m = 2rta( (m is an inverse length). For a system confined in a finite two- 
dimensional plane domain D, the grand potential f2 is given by 

fir2 = - Tr log( 1 + K )  = - ~ l o g (  1 + J.~) (4 .1  ) 
i 

where K is an integral operator with eigenvalues 2i; the operator K, its 
eigenfunctions (q~, Z), and its eigenvalues 2 are defined by the two coupled 
integral equations 

m 
2---~ Io d2r' x(r') = 2~b(r) (4.2a) 

m 2,  1 
fo d r ~ ~k(r') = 2z(r) (4.2b) 

Actually, the trace in (4.1) diverges, and one must regularize it by 
introducing some cutoff. The physical interpretation is that the point- 
particle model with Coulomb interactions is unstable against the collapse 
of pairs of oppositely charged particles, unless the Coulomb interaction is 
regularized at short distance. 
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The integral equations (4.2) can be converted into differential equa- 
tions with appropriate boundary conditions. Indeed, since 

O 1 0 1 
- -  = ~ & ( r  - r ' )  

O ~ z - z ' - O z ~ - ~ '  

by applying the appropriate differential operators on (4.2) one finds the 
coupled equations 

20x(r)  m d0(r) rn 
=-~- 0(r), 2 x(r) (4.3) 

Oz O~ 2 

(they can be rewritten in a more compact form in terms of the Dirac 
operator d; this is the well-known equivalence between the Coulomb gas at 
flq-'= 2 and a free Fermi field). Equations (4.3) can be combined into the 
Laplacian eigenvalue problem 

- zl0(r) = kZ0(r) (4.4) 

where k 2 = -  (rn/2) 2. The boundary conditions can be obtained by a 
continuation of (4.2) for r outside the domain D: in each connected part of 
the exterior of D, 0 and X are seen to be analytical functions of z and 5, 
respectively, vanishing at infinity in that connected part which is infinite; 
furthermore, 0 and Z must be continuous on each boundary. Thus the 
boundary conditions for (4.4) in D are O Ioo=g and 0.,0 [0o=/~, where g 
and h are analytical in each connected part of the exterior of D and tend 
to zero at infinity if that connected part is infinite. 

The operator - d  with these boundary conditions can be shown to be 
self-adjoint; thus the eigenvalues 2 are of the form +i(m2/k2) '/2, and (4.1) 
can be rewritten as 

(m') 
-- = -  +-7 ,  ) /3f2 - T r l o g  1 + ~  log I (4.5 

�9 k 7  

where the k~ are the eigenvatues of --A with the previously described 
boundary conditions. 

In the following, we shall consider a few geometries for which the 
grand potential can be studied in more detail, and we shall check that it 
has an expansion similar to (1.4): 

fir2 = AL  2 + BL + 6 log L + ... (4.6) 
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The proof that (4.6) should hold in general would be the same as the one 
sketched in Section 2.4. One would relate L(Ot2/OL) to the average (~9) of 
the trace of the stress tensor. 

4.1.  T h e  D i s k  

Let the domain D be a disk of radius R. The eigenfunctions of (4.4) 
can be written in polar coordinates (r, ~o) in terms of Bessel functions Jt as 

q/(r) = Jl(kr)e n~ 

Then 

k r tkr~ei(t+ 1~o O~,(r )=  - - ~ / + 1 ,  , 

If 1>t0, the boundary conditions become Jt(kR)=O [then g = 0  and 
f~=-(k/2)Jt+l(kR)(ReiC'/r)l+~]. If l<0 ,  the boundary conditions 
become Jl+~(kR)=O [then g=J~(kR)(rei~~ and /~=0]. Since 
Jr+ ~ = ( - 1 )t+ ~ J - t -  1, altogether (4.5) becomes 

fir2= --2 ~ l o g  1 +77-, (4.7) 
t=o ,, kT.,, 

where the sum on n runs on all the positive roots of J~(kR)= O. 
This sum on n can be evaluated exactly by noting that the entire 

function 

f ( z )  = 1! (2/Rz)t Jl(Rz) 

[which is such that f ( 0 ) =  1 ] has the infinite product representation 

( z2 )kT.,, _ ---g- f ( z )  = 17 1 

(4.8) 

Thus the sum on n is just log f(im), and 

//12 = - 2 ~ log[l! (2/mR) t It(mR)] (4.9) 
/ = 0  

where I~ is a modified Bessel function. 
As explained above, the sum (4.9) is divergent, and we shall regularize 

it by introducing an upper cutoff N on L Although the sum cannot be done 
exactly, we can obtain a few terms of its asymptotic expansion for large R. 
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One way of doing this is to use the Debye expansion t~gJ of It(or) (we set 
mR=cO. This expansion is the one which is appropriate here, since it is 
valid for large ct uniformly in L It gives 

1 1 
log I/(~) = - ~ log(2n) - ~ log(or 2 + 12) + q(/, a) 4 24l b O 

(4.10) 
where 

q( l ,~)=(~2 +12) l / ' - - l s inh-I ( l /~) ,  t=l/(ct2 +lZ) 1/2 

The sum (4.9), cut off as N Y'-,=o, can now be evaluated: S log 1! is obtained 
by using (3.3) and (3.4), and Z log I~ is obtained by using (4.10) and the 
Euler-MacLaurin summation formula 

N N 

f ( l )  = I~ f ( x )  ax + �89 [f(0) + f ( N ) ]  + ~ [ f ' (N)  - f ' ( 0 ) ]  + ... 
/ = 0  

The result is 

1 5 
flI2 = -- flpnR 2 + fl?2rtR + -~ log(mR) - -~ 

where 

and 

,, ( , )  + ~  og 2 -  2~"(-  1) + 0 

(4.11) 

rn-'( 2N)  (4.12) 
flp=-~-~ 1 +lOgmR 

1 1 
fl? = rn ( ~ -  ~-~) (4.13) 

The only term in (4,11) which diverges as N ~  0o is the first one; the limit 
N-* ~ has been taken in the rest of the expansion (4.11). If the Coulomb 
interaction is cut off at some short distance tr, the corresponding cutoff N 
on / should be of the order of R/a, and we recover for the pressure p the 
known expression ~17- t8~ 

nfl / 1 ) 
tiP = ~-n ~log ~ + const (4.14) 

The next term in (4.11) involves a surface tension ~ which is also the 
known one. 1~8J Finally, (4.11) has a term (1/6)log R, in agreement with the 
general formula (4.6), with g = 1 for a disk. 
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4 .2 .  T h e  Annulus 

The disk calculation can be generalized to the case of an annulus with 
an inner radius R~ and an outer radius R2. The eigenfunctions of (4.4) now 
are of the form 

t~(r, qg ) = [ AJt(kr ) + BNt(kr) ] e u'~ 

where J~ and Nt are Bessel functions of the first and second kind, respec- 
tively. If l~>0, the boundary conditions now become ~,(R2, q0)=0 and 
0e~b(Rl, ~0) = 0, i.e., 

AJt(kR2) + BNt(kR2) = 0 

A Jr+ l(kR~) + BNt+ t(kRj) = 0 

Thus, the eigenvalues k,.,, are the positive roots of 

Jt(kR2) Nt+ ~(kR~)- Jr+ ~(kR~) Nt(kR2)= 0 (4.15) 

Using a symmetry between l and - 1 -  1 for dealing also with the case 1 < 0, 
one finds again a grand potential given by (4.7), where now the k~., are the 
positive roots of (4.15). 

The sum on n in (4.7) can be again brought to the form logf( im) by 
using the infinite product representation of the entire function f(z) ,  which 
is now 

rt Rtl + t 
f ( z ) =  2 R ~  z[Jl(R2z) N t+ l ( R t z ) - J t+ t (R I z )N t (R2z ) ]  

and after simple manipulations on f ( im) one obtains 

{~ t f lO= --2 log m - -  [Ii(mR2) Kl (mRl)+I) (mRi)Kl (mR2)]  (4.16) 
t=o R/z 

where I~ and K~ are modified Bessel functions. 
Again we cut off the sum on I at some upper value N and we look for 

an asymptotic expansion of ill2 when R~, R2 ~ ~ with a fixed ratio R2/R~, 
using the Debye expansions <~9) for It, 1'/, Kt, K't. The term I'jKt in (4.16) 
can be discarded because it is found to give a contribution exponentially 
smaller than the one from the term IrK' t. Using again the Euler-MacLaurin 
summation formula, one finally finds 

fl/'2= - - T  1 + l o g ~  R2 2 -  1 +log~--~l 

1 1 R2 
- - m ( 1 - - 2 )  ( R ' + R z ' + ' 6  ~ + O (m--~2) (4.17, 
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Again, the only divergent term in (4.17) is the first one. In terms of the 
short-distance cutoff cr of the Coulomb potential, the cutoff N must be 
chosen of the order of R / a ,  where R is some characteristic size of the 
annulus. Extensitivity can be obtained by choosing 

R = R 2 X  - x 2 / ( l -  x'-~ 

with x = R ~ / R 2 .  Then 

1 R~ ( 1 )  
fig2 = - [ 3 p n ( R 2 - - R , ) + f l y 2 r t ( R , 2  2 + R z ) + g l o g ~ - ~ + O  ~ (4.18) 

with a pressure p and a surface tension 7 again given by (4.14) and (4.13), 
respectively. As R~ and R2 go to infinity with a fixed ratio x, the term 
( 1 / 6 ) l o g ( R , . / R l )  of (4.18) remains O(1), in agreement with the general 
formula (4.6), where )~ = 0 for an annulus. 4 

4.3. The Sphere 

The case of the sphere was considered in ref. 20. On a sphere of radius 
R, the grand potential is 

1 ( m 3 
3 f 2 = - s T r l ~  1 - ~ - i  

where 9 is the Dirac operator on the sphere. Its eigenvalues are +in/R, 
where n is any positive integer, with multiplicity 2n. Thus 

f i r 2 = - 2  ~ nlog 1+ 
n = 1 /12 ) 

Introducing an upper cutoff for n, one finds the asymptotic expansion 

1 '  1 
fir2 = - f lp4rcR z + -~ log m R  - 4('( - 1 ) 6 0 m 2 R 2  t- . . .  

in agreement with the general formula (4.6), where X = 2 for a sphere. 

5. C O N C L U S I O N  

The correlations of the electrical potential and electrical field in a 
classical Coulomb system (when in a conducting phase) are identical to the 

4A more detailed account of the calculations in Sections 4.1 and 4.2 is available from 
C. Pisani on request. 
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corresponding ones for the Gaussian model of field theory (which is critical 
at all temperatures) .  This behavior  of the correlation functions of Cou lomb  
systems is equivalent to their perfect screening property.  

F rom that  point  of view, Cou lomb  systems are critical systems. The 
universal finite-size correction to the free energy of two-dimensional  critical 
systems does apply in general to Cou lomb  systems. This can be explicitly 
checked on solvable models. 

A P P E N D I X .  M O R E  O N  T H E  T W O - C O M P O N E N T  P L A S M A  
AT  I]qZ = 2 

An alternative approach to the finite-size, two-component  plasma at 
flq2 = 2 is obtained by studying the total number  of particles N rather than 
the grand potential  s For  a system confined to a plane domain  D, one 
obtains from (4.5) 

d~ 2m2 =2m2 fo d 2 r G ( r , r )  (A.t)  N = -- m (flI2) = Tr  mZ _-----~ 

where G(r, r ' )  is the Green function of m 2 -  ,4, i.e., the solution of 

(m-" - ,4 ) G(r, r ' )  = 6(r - r ' )  (A.2) 

with the peculiar boundary  conditions described at the beginning of 
Section 4. 

In the special case of a domain  D with circular symmetry  (disk, 
annulus), one can obtain the solution of (A.2) in the form of an expansion 
in circular harmonics  e n~r compute  the integral on r in (A.I),  and 
integrate N(m)/m with respect to m. This is another  method for deriving 
(4.9) or  (4.16). We leave it as an exercise for the reader. 

One can look for a relation between the asymptot ic  expansion (4.6) 
and a general small-t expansion first studied by Kac  t2~ for the spectral 
function @d(t) of the Laplacian '4d with Dirichlet boundary  conditions in 
an arbi trary finite connected smooth  domain  D: 

A L 1 
@d(t)=Tre - 'c -~  I- ( l - - r ) +  . .-  (A.3) 

--4rt t  8(rtt) 1/2 

where A is the ai'ea of  D, L is the length of its perimeter,  and r is the 
number  of holes in D. Indeed, (A.1) can be written as 

N = 2m2 
Tr  m2 _ A = 2mz ~i dt e-"2 '@(t)  (A.4) 
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where 

qb(t) = T r  e -'~-d~ (A.5) 

However, the Laplacian which appears in (A.5) is the one with the 
boundary conditions of Section 4, and we have not been able to make a 
general connection between the present spectral function q~(t) defined with 
these boundary conditions and the Dirichlet spectral function (A.3). 

The connection can be made, however, in the special case of a disk, 
when the expression for N which corresponds to (4.7) and (4.9) is 

2m 2 ~ 2m 2 
N = T r m 2 - d = 2  ~=o~, m2+k2n 

t . . . .  m2 + kT.,, + 2 ] m 2 + ko.,, 

2m 2 mRI'o(mR) 
= T r  m 2 - d a  + Io(mR) 

where we have set aside an l = 0  term (there is only one such term for 
Dirichlet boundary conditions, while this term has a twofold degeneracy 
for the present boundary conditions). From (A.4), 

I f  mRI'o(mR ) 
N= 2m 2 dt e-"2t~a(t) + Io(mR) 

Using (A.3) for ~a(t)  and the large-R expansion 

mRl'o(mR) 1 
Io(mR) m R -  ~ + ... 

one gets 

m2nR2I~dt  e .... 2, m 2 n R + ~ +  . . . + m R - ~ +  ... 
N= 2n t 4 

When regularized by the introduction of a small-t cutoff, the integral in the 
first term of N is of the order of log(1/m2a2), and by an integration of 
N(mR)/mR with respect to mR one recovers the expansion (4.11) of the 
grand potential up to the log(mR) term. The extra l =  0 term contributes 
to both the surface tension (4.13) and to the universal log(mR) term. Note 
that the constant term in (4.11) cannot be obtained by the present method, 
because this constant is lost when one looks for an asymptotic expansion 
of the derivative df~/dm rather than of f2 itself. 
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Since one expects the asymptotic expansion (4.6) to be valid for a 
smooth domain D of arbitrary shape, with shape-independent pressure, 
surface tension, and (Z/6)log L terms, one also expects that the spectral 
function (A.5) with the boundary conditions of Section 4 has the corre- 
sponding shape-independent small-t expansion 

A (1 1 )  L 1 ( l _ r ) + . . "  
�9 (t) =~-~- -~-~ 12 (~t) 1/2 

Such an expansion might be hidden somewhere in the mathematical 
literature. 
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